








not be determined (and which are thus useless for
modelling). The PDBFINDER2 provides many more
per-residue data aligned with the sequence, which are
described in the caption of Figure 4.

In our daily experience, there are two main applications
for the PDBFINDERs. The first is complex structure se-
lection queries that cannot be expressed easily in a
database language like SQL. For instance,
PDBFINDER allows us to quickly select all PDB entries
that contain a specific enzyme (by employing the EC
number) or all PDB entries that have more than 10 incom-
plete side chains. The required parsing of the
PDBFINDER format takes just a few lines of code, but
we also provide a Python module at www.yasara.org/
biotools/. The second main application is visualization
of the data by mapping it onto the corresponding 3D
structure. For this purpose we developed a Python
plug-in for the free molecular modelling program
‘YASARA View’ (42), available from www.yasara.org/
viewdl/. Both Python scripts are licensed under the
GNU GPL. Figure 5 shows examples of how information
from PDBFINDER2 can be visualized.

To study specific properties of proteins structural biolo-
gist can study the entire PDB or a representative subset.
Such subsets are lists of PDB entries created by filtering
the PDB based on criteria of structural uniqueness, struc-
ture model quality and experimental parameters.
Structural uniqueness is asserted by looking at the
pairwise sequence alignment of all entries in the list and
setting a cut-off for the maximum allowed sequence
identity. From the Sander–Schneider plot, (Figure 2) we
see that 25% identity is a safe cut-off. Structure model
quality can coarsely be determined by looking at the

crystallographic (free) R-factor, but a more detailed
filter for structure quality uses the results from structure
validation software like PROCHECK (44) or
WHAT_CHECK. Experimental parameters are usually
the type of experiment used to ‘solve’ the structure (e.g.
X-ray crystallography or NMR spectroscopy) and the
X-ray resolution. PDBselect by Hobohm and Sander
(45–47) provides a good example of methods to select a
representative subset of the PDB and so do the PISCES

Figure 4. PDBFINDER and PDBFINDER2 entries of PDB file 1crn (41). The new PDBFINDER2 fields start just below the ‘Sequence’ field, where
the PDBFINDER (40) ends. They provide information about the DSSP secondary structure, the number of aligned UniprotKB sequences, the
number of insertions and deletions in these alignments (Nindel), the sequence entropy and conservation weights (all from HSSP). The following fields
originate from the PDBREPORTs: Residues involved in crystal contacts, residue accessibilities, and then a large number of structure quality
indicators: missing atoms (Present), B-factors, normality of bond lengths, bond angles, torsions, the Ramachandran Plot, side-chain planarity,
backbone conformation, peptide-plane orientation, side-chain rotamers,Chi-1/Chi-2 side chain torsion angle distribution, bumps, 3D packing (old
and new method) and inside/outside distribution of amino acids. Finally, unsatisfied hydrogen bond donors & acceptors, as well as flipped Asn, Gln
and His side-chains are reported. The data are expressed as single digit scores, where most of the time ‘9’ means perfect and ‘0’ terrible, the details
can be found at the top of the text file.

Figure 5. Example of PDBFINDER2 visualization options [2ptn; (43)].
In the bottom slice the solvent accessible surface the surface of residues
involved in crystal contacts is coloured yellow. His, Asp, and Ser label
the catalytic triad in the slice that shows the molecular surface coloured
by HSSP conservation weights (from blue (variable) to yellow
(conserved)). The protein backbone is coloured by 3D packing
quality in which blue is well packed and red is more poorly packed.
Plot made with YASARA (42).
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system (48) and the PDB_REPRDB (49–51). We also have
precompiled representative lists of PDB entries in the
PDB_SELECT database at http://swift.cmbi.ru.nl/gv/
select/ (52). In PDB_SELECT, we have sorted the
entries by their quality so that users who take the first N
entries from one of the lists will automatically get the
best N PDB files where ‘best’ is defined as a function
of resolution, R-factor, and a few WHAT_CHECK
quality parameters as described above. Historically, we
used a sequence identity cut-off of 30% to balance the
requirement of structural uniqueness and getting a
large enough data set. With the large increase in size of
the PDB, a lower cut-off can be used in future
PDB_SELECT sets.
The databases discussed above are kept up-to-date

automatically so new entries are continuously added.
Sometimes PDB entries are made obsolete rendering
their corresponding database entries also obsolete. We de-
veloped the WHY_NOT database to keep track of these
changes in our other databases. WHY_NOT uses a
crawler that runs through a local copy of the PDB and
lists which database entries could (in principle) exist and
then checks all the databases to see which entries actually
do exist, which entries are missing and which entries are
obsolete. As the name WHY_NOT implies, the most im-
portant function is storing the reasons why certain entries
are missing. This serves both the users and maintainers of
our databases. For users it is helpful to know that an entry
cannot be made and an alternative should be sought, for
maintainers it is good to know which entries we should
stop trying to make over and over again.
The most trivial reason for a missing database entry is

that the PDB entry is so new that corresponding database
entries were not created yet. Another simple reason for
missing entries is the lack of input data. For instance,
PDB_REDO needs the experimental X-ray data; if such
data was not deposited, or the structure was solved by
other means than X-ray crystallography (such as NMR
spectroscopy) a PDB_REDO entry cannot be made.
Similarly, a HSSP entry can only be made if a DSSP
entry exists. These are obvious reasons for missing
entries, but many problems are not straightforward and
are annotated in WHY_NOT as ‘comments’. For instance
DSSP cannot use protein structures that consist only of
Ca-atoms, neither can it use PDB entries that contain only
nucleic acids or ‘other things’ such as vancomycin (PDB
entry 1sho; (53)). No PDBREPORTs will be made for
PDB entries that contain no macromolecules such as
PDB entry 1tn1 (54). A PDB_REDO entry cannot be
made for X-ray structures in which not all atoms are ex-
plicitly listed, but need to be created through matrix op-
erations, which is common practice with viral capsids [e.g.
PDB entry 4rhv; (55)]. The most common problems listed
in WHY_NOT are given in Table 3.
Most database update procedures add WHY_NOT

comments automatically. The update procedure for
PDB_REDO is an exception; all WHY_NOT comments
are checked by hand. There are two reasons for this: some
errors can be traced back to annotation problems in the
PDB file or the X-ray data file (e.g. missing R-factors,
corrupt TLS group selections, X-ray data stored in the

wrong format) and others to limitations in the
PDB_REDO software. The PDB_REDO software is
topic of ongoing research and is routinely updated to
improve dealing with existing PDB problems. Solvable
problems in PDB files are always reported to the PDB
to ensure that they are fixed at the source rather than by
making elaborate workarounds. So far, we have reported
some 500 errors in PDB files. Simple administrative
problems were fixed swiftly by PDB annotators (typically
within two weeks) after which the PDB file was
re-released, scientific problems that require information
from the depositor and may take longer to be solved.

INTEGRATED UPDATING MECHANISM

All but one of PDB derived databases are updated with
every new PDB release (PDB_SELECT is updated
annually or upon request). When a new entry is added
to the PDB or an existing entry is altered, its correspond-
ing database entries are also (re)created. Our databases
are interdependent via ‘hard’ dependencies (e.g. no
HSSP entry can be made without a DSSP entry) and
‘soft’ dependencies (PDB_REDO uses PDBREPORT if
an entry is available). The dependencies between data-
bases are depicted in Figure 6. The process of building
our databases resembles building software from source
code where one creates object files out of source files,
which are then linked into executables. Because of this
similarity we have chosen the ubiquitous make to do the
actual work and the rules are written in Makefiles and the
result is a very flexible and robust system. Once a week,
the make process is started by a ‘cron’ job and then it
starts fetching the latest updates for PDB. After
updating PDB, the depending databanks are built,
guided by the Makefiles and the dependencies embodied
therein. We have tweaked the Makefiles to allow for an
exception for replacing existing HSSP files: HSSP uses the
UniprotKB database, but because UniprotKB and PDB
entries do not map 1-to-1, ‘all’ HSSP entries should be
updated with every new release of the Uniprot knowledge
base. This makes the maintenance of HSSP files a quad-
ratic problem because each PDB entry is aligned against
all UniProtKB entries, and both databases grow continu-
ously. We do not have the CPU power available to update
all HSSP files at every UniprotKB release; instead we
update as many HSSP files older than 6 months as we
can (typically a few thousand) with the remaining CPU
time of our 1 week update cycle.

Table 3. Examples of WHY_NOT comments

Database Comment Occurrences in
the PDB

DSSP Nucleic acids only 2.1k
HSSP No alignable sequence 97
PDBREPORT Too many C-a only residues 211
PDB_REDO No R-factor reported 66
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ACCESS

Multiple forms of access to the systems exist. The MRS
system (mrs.cmbi.ru.nl) is a generic, freely available
database query system that has been described elsewhere
(39). MRS provides access to about 60 international data-
bases that we use often enough to warrant in-house
shadowing. MRS can also be used to query all databases
mentioned in this article, except WHY_NOT. MRS also
handles Web service requests, either using SOAP or the
REST protocol. Five of the systems can be shadowed
in-house using the rsync protocols listed in Table 4.

WHY_NOT is accessible via the WHY_NOT query
system. DSSP can additionally be accessed through the
WHAT IF Web servers (swift.cmbi.ru.nl) or through the
WIWS Web services (WSDL address: http://wiws.cmbi.ru
.nl/wsdl); these two systems also allow the user to upload
his/her own PDB file for secondary structure
determination.

PDB_REDO and PDBREPORT are also directly
linked at every entry page of the EBI interface of the PDB.

FUTURE WORK

We continue to work on our databases in order to
improve the quality and usability. An improvement of
quality comes mostly from adding new options to the
WHAT_CHECK software and the PDB_REDO
pipeline. Both are subject of ongoing research and new
features are added frequently. The PDBREPORT
database will be completely rebuilt when a new
WHAT_CHECK is released by the end of 2010. We are
also working on improving our software to reduce the

number of missing entries or, if all else fails, have clear
explanations why certain entries cannot be made. Our
WHY_NOT database will be an important resource to
achieve this.
In terms of usability, we are working on making our

databases easier to access. For instance, PDBREPORT
can be indexed by our MRS database searching
software. PDB_REDO structures will be accessible
directly from molecular viewers such as YASARA. We
are also working on new dissemination tools to guide
the user in using our databases. We focus strongly on
visualization: the WHAT_CHECK user course currently
under development has numerous visual examples of the
warnings and errors that can be found in PDBREPORT.
The latest version of the PDB_REDO pipeline creates
YASARA scenes that show exactly which atoms moved
the most when a PDB entry was optimized.
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Figure 6. Database dependency schema. Dependencies between our databases (white background boxes) and three data sources (gray background
boxes). A solid arrow means that an entry can only be made if an entry in the box where the arrow comes from exists. A dotted arrow means that
data is used when available. The databases inside the gray line are indexed in WHY_NOT.

Table 4. Rsync access to the databases

Databank Access

DSSP rsync -avz rsync://rsync.cmbi.ru.nl/dssp/ dssp/

HSSP rsync -avz rsync://rsync.cmbi.ru.nl/hssp/ hssp/

PDBFINDER rsync -avz rsync://rsync.cmbi.ru.nl/pdbfinder/ pdbfinder/

PDBFINDER2 rsync -avz rsync://rsync.cmbi.ru.nl/pdbfinder2/ pdbfinder2/

PDB_REDO rsync -avz rsync://rsync.cmbi.ru.nl/pdb_redo/ pdb_redo/
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53. Schäfer,M., Schneider,T.R. and Sheldrick,G.M. (1996) Crystal
structure of vancomycin. Structure, 4, 1509–1515.

54. Brown,R.S., Dewan,J.C. and Klug,A. (1985) Crystallographic and
biochemical investigation of the lead(II)-catalyzed hydrolysis of
yeast phenylalanine tRNA. Biochemistry, 24, 4785–4801.

55. Arnold,E. and Rossmann,M.G. (1988) The use of
molecular-replacement phases for the refinement of the human
rhinovirus 14 structure. Acta Crystallogr., A, Found. Crystallogr.,
44(Pt 3), 270–282.

Nucleic Acids Research, 2011, Vol. 39, Database issue D419

 at M
ain Library L610 Law

rence Liverm
ore N

at Lab on January 13, 2011
nar.oxfordjournals.org

D
ow

nloaded from
 

http://nar.oxfordjournals.org/

